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Abstract

There have been many recent applications of interface models and Hamil-

tonians to problems in the theory of wetting. These models help to understand

more abstract calculations on the type of problem which can be treated on

the one hand, and on the other, to extend the type of problem which can be

treated. A very recent example of this is corner wetting, also known as filling.

This contribution discusses the validity of such concepts from first principles

using exactly calculated interface structures and phase diagrams.

We shall use the planar Ising model with boundary conditions and surface

fields imposed to bring in wetting. The well-known Jordan-Wigner trans-

formation to lattice Fermions is composed of a product of spin reversals to

one side (on a strip) of the point at which the lattice Fermi operator acts.

Such spin reversals introduce a domain wall in a natural way which can be

exploited to bring in interface Hamiltonians in a natural and precise way. We

also comment on the perennial problem of intrinsic structure. Our findings

do not support the notion of such a structure attached to capillary waves by

convolution. In a sense to be made precise, kinks have to be allowed for.

KEY WORDS: Exact solvable models; Ising model; interfaces; wetting.
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1 Introduction

Some time ago, one might have been excused for thinking that there was nothing

more to the scientific study of interfaces than determining incremental free ener-

gies such as surface tension. Following Onsager’s advise that “preoccupation with

partition functions maketh a dull man”, the study of correlation functions in inter-

faces between coexistent phase in uniaxial ferromagnets has produced a number of

surprises. These have been exposed by calculations on the planar Ising model

The layout of this article is as follows: first, some exact results about interfacial

structure and wetting will be presented. After this, a coarse-grained representation

of interfaces will be introduced; this brings in interface Hamiltonians.

2 Interfacial structure

Consider a planar Ising model with spins σ(i) = ±1 at the vertices i of a quadratic

lattice with unit side, coupled by a Hamiltonian

HΛ = −J
∑
|i−j|

σ(i)σ(j)−H
∑
i

σ(i). (1)

In (1), Λ specifies a finite subset of the quadratic lattice which is rectangular and

has no holes in it.

Let the Ising model be equilibrated with a heat bath at a temperature T . Then

it is well known that the probability of any configuration of spins denoted by {σ} is

given by

p({σ}) = 1

ZΛ
exp(−βHΛ({σ}) (2)

where β = 1/kT . Here in after, the notation βJ = K and βH = h will be used.

ZΛ is the canonical partition function which normalizes p({σ}) in (2). The basic

theory of this model shows that only for h = 0 and sinh 2K > 1 is there an ordered

phase [1, 2, 3, 4], which is characterized by two coexisting phases [3, 4] of equal and
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opposite magnetization ±m∗, with

m∗ =
(
1− 1

sinh4 2K

)1/8

. (3)

A crucial fact is that phase transitions only occur in the thermodynamic limit as

Λ → ∞ (in a manner to be specified). Clearly, there is problem about the meaning

of (2) in such a limit, but his can be circumvented by considering expectation values

for finite Λ, followed by a limit. A more subtle problem is how the coexistence of

oppositely magnetized phases comes about. The resolution of this was first given by

Peierls [5]; the mathematics was tidied up later [6, 7]. The correct procedure is to fix

the boundary spins on Λ to be σ(i) = +1 on δΛ; this prescribes the +-magnetized

state as Λ → ∞. Equally well, the opposite one is prescribed by σ(i) = −1 on δΛ.

To produce and interface, a reasonable candidate is to fix σ(i) on the boundary δΛ

as follows σ(i) = +1 for i = (i1, i2) ∈ δΛ and i2 ≥ 0, but σ(i) = −1 for i ∈ δΛ,

i2 < 0. Let the partition function in this case be denoted by Z+−
Λ , and for the case

σ(i) = +1, i ∈ δΛ, Z+
Λ . Then the surface tension is defined by

τ = lim
M→∞

1

2M + 1
lim

N→∞
log

( Z+
Λ

Z+−
Λ

)
(4)

This can be calculated, giving [8]

τ = 2(K −K∗) (5)

where the involution K∗ of K is defined by

e−2K∗
= tanhK (6)

This satisfies Widom scaling [9] and one might be forgiven for thinking Onsager’s

dictum to be inappropriate, but for the following result: calculate the magnetization

lim 〈σ(x, y)〉+−
Λ [10]. The results are

lim
M→∞

limN → ∞〈σ(x, y)〉+− = 0 (7)
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for all (x, y), and sinh 2K > 1. This invites the following question: Where is the

interface? It is recaptured by scaling x and y with M , the width of the strip, giving

lim
M→∞

lim
N→∞

〈σ(βM,αM δ)〉 = m∗sgnα




1 δ > 1/2

0 δ < 1/2

Φ(b|α|/√1− β2)

(8)

where

Φ(u) =
2√
π

∫ u

0
e−t2dt (9)

and

b =
√
sinh 2(K −K∗) (10)

So the loci of constant modulus of magnetization are elliptical, with semimajor axis

βM (−1 < β < 1) and semi-minor axis CαM1/2b−1, where c is determined by the

value of the magnetization. To understand equation (10), a further argument is

needed: suppose that the point at which the spin reverses on the right hand side

of the lattice is moved upwards. This allows investigation of an angle-dependent

surface tension denoted by τ(θ) [11]. A tedious calculation show that

b2 = τ(0) + τ (2)(0) (11)

The generalization of (8), (9) and (10) to the interface at angle θ is obtained with

rotated axes, one lying along the lines connecting the points of spin-reversal, the

other along a perpendicular to that line, with the intersection point defining a ap-

propriate value of b. Equation (8) is recaptured with but one change — b is replaced

bye b(θ). Provided the angle-dependence of τ(θ) is taken into account, a fluctuation

theory also gives (8), (9) and (10) [12]. This theory assumes that there is a sharp

line separating regions of opposite magnetization ±m∗; this line has no overhangs

and is controlled by a fluctuation theory of Helmholtz type. That such simple model

“works” is very reassuring, but one should not be deluded into concluding that the

Physics is the same. Before going on to examine this point critically, it should be
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noted that this phenomenology appears to work whenever τ(θ) > 0. Trying to un-

derstand (8), (9) and (10) from the point of view of low-temperature series is unduly

restrictive and has the disadvantage that the factor b(θ) in (8) and (10) cannot be

identified with τ(β) and τ (2)(θ) since they are approximated by polynomials in e−2K .

The objective is to develop and analogue of Peierls contours expressed in a lan-

guage appropriate for the exact solution of the planar Ising model by “transfer

matrix” and “fermionic” methods. The description given here will be qualitative;

the reader who wants mathematical precision is referred to the references [13] and

work in publication.

Since the interactions in (1) are nearest-neighbor, expectations with respect to

the canonical probability (2) can be expressed in terms of a Markov chain between

states of vertical columns of spins. The transition matrix (un-normalized!) is taken

as a representation in a prescribed basis of an operator on the finite-dimensional

Hilbert space hM of spins- 1
2
states:

hM = C × · · · × C (12)

where each C is a two-dimensional spin space. The object is to “diagonalise” sym-

metrised versions of the transfer operator. This has been done in the “classical”

period [14]. The maximum eigenvalue gives the free energy in the thermodynamic

limit; the submaximal ones (excited states) together with matrix elements of local

observables [15] such as spin σ(x, y) at position y in column x, with some method

of implementing the boundary conditions [16], give correlation functions such as (7)

and (8).

The key features of the diagonalisation process is the appearance of fermion

operators fj and f †
j through the Jordan-Wigner transformation

fj =
j−1∏
k=1

(−σz
k)σ

−
j (13)

These operators display fermi anticommutation relations and a unitary transfor-

mation diagonalizes the transfer matrices, which are in the representation with σx
j

6



diagonal. Thus (13) has a “tail” which reverses all x-quantized spins between j − 1

and reference point at k = 1. A pair of operators fjfl reverses spins between j

and l; this is a collective effect and is not surprisingly important in investigating

submaximal eigenvectors of the transfer matrix. These remarks are merely a tour

d’horizon and the reader who wants to go further should consult the references.

The key feature needed is that for sinh 2K > T and cylindrical boundary conditions

there are two-particle states generated by the “diagonal” Fermi operators. In order

to be able to wrap the set-up onto a cylinder, we need two interfaces which become

infinitely separated, and thus independent, in the infinite volume limit. Each in-

terface is generated by a single fermion (multifermion states are suppressed in the

M → ∞ limit). What is desired now is a real-space version of such an argument,

in which we can track the location of the interface as it crosses the lattice. It is not

obvious that this can be accomplished without including overhangs; but this turns

out to be possible.

Suppose such a domain-wall state |j〉 exists, and that such states span the 1-

particle subspace. Then the following properties are appropriated

〈j|k〉 = δjk (14)

T |j〉 = |j − 1〉 (15)

where T is the unit translation in the column, and

M |j〉 = −(2j − 1)m∗|j〉 (16)

where M is the total magnetization between points ±p in a column (with p → ∞).

Clearly, the fluctuations in the local magnetization should be localized. Thus

〈j1|σx(j)|j2〉 (17)

should have the value m∗sgn(j − 1
2
)δj1,j2 as j → ±∞ for any finite j. A detailed

analysis of this matrix element shows that it is non-constant whenever the j’s are

close together than about a correlation length.
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The magnetization profile is given in terms of the domain wall states (the result

is restricted to the 1-particle spectrum, which suffices for the limit) by

〈σ(x, j)〉 =
∑

j1,j2〈b|V N+x|j1〉〈j1|σx(j)|j2〉〈j2|V N−x|b〉
〈b|V 2N |b〉 (18)

Were the SOS approximation correct, the central matrix element would be given by

〈j1|σx(j)|j2〉 = m∗δj1,j2sgn(j − j1 − 1

2
) (19)

This would give the results (8), (9) and (10) but does not agree with the exact

calculation. Similarly, the notion that

〈j1|σx(j)|j2〉 = m∗δj1,j2g(j − j1 − 1

2
) (20)

for some possibly monotone function g(x) (with limx→∞ g(±x) = ±1) is not correct

either. This is the vehicle for the usual ideas of intrinsic structure and unfreezing

of capillary waves, represented by the two other matrix elements with the boundary

states. The matrix element 〈j1|σx(j)|j2〉 has off-diagonal elements; this renders the

usual formulation of intrinsic structure invalid, and with it, the idea of unfreezing

capillary waves appears to be misleading.

The domain wall states allow a rigorous formulation of the domain wall problem

as a sum over paths without overhangs with a transition amplitude between n-th

neighbor columns of

T n(j1, j2) =
1

2π

∫ 2π

0
dωe−nγ(ω)ei(j1−j2)ω (21)

This allows an exact formulation of the Weeks columnar model [16] in this case.

Notice that it is not required to bring in the scaling limit, and that the usual

Gaussian type of approximation to (21) arises naturally and in a controlled way.

3 Wetting Phenomena

The next topic which will be investigated is particularly appropriate for this meeting,

namely, exact solutions for wetting and the relevance of domain walls states for
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setting up interface Hamiltonians. First, the exact solution for pinning-de pinning

will be overviewed. If there is a domain wall, or long contour in the Peierls sense, to

be precise, should the bonds normal to the edge be weakened from the bulk value,

then the interface will be stabilised by lying at the boundary, but will loose entropy as

a result. This is the classical transition scenario. There is indeed a phase transition

at a temperature intermediate between zero and the two-dimensional bulk one given

by sinh 2Kc = 1 depending on the degree of bond weakening. Let the surface bonds

have value aK, 0 < a < 1. Then the transition occurs when (see figures 2 and 3)

e2K(cosh 2K − cosh 2aK) = sinh 2K (22)

At a thermodynamical level, there is a singularity of the incremental free energy.

This transition is associated with a new length scale ξx(a,K) which diverges on

approaching the transition line from one side. On the other side, the interface is

detached from the wall. Some care is needed in setting up this transition: boundary

conditions must be chosen so that the bulk state is extremally magnetized, sat at

+m∗. It turns out that domain wall states can be defined in this case as well, but

now in terms of eigenstates of a transfer matrix working parallel to the edge of the

system. Let the state |j〉 now describe a domain wall at a distance j from the edge

of the lattice. The transfer matrix elements are

〈j1|V n|j2〉 = 1

2π

∫ π

−π
e−nγ(ω)

{
eiω(j1−j2) − eiω(j1+j2) eiφ(ω)

}
(23)

Some remarks are in order. Firstly, only a single interface appears. This is at

variance with the ideas of Parry and coworkers [18]. The interfacial stiffness once

again acts to flatten the interface in the Gaussian approximation.

The interface stiffness does not have a correction depending on (j1 + j2)/2, as

the work in three dimensions of Fisher and Jin [19] suggests: this absence may well

be a special feature of the planar Ising Model. The question of the matrix elements

〈j1|σx(j)|j2〉 in the wetting case is under active consideration; the problem is much

harder than the free interface one, but will hopefully prove tractable.
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Figure Captions

Figure 1. Geometry of the lattice.

Figure 2. Phase diagram for wetting. Between the axes and the curve there is

partial wetting, represented by points 1 and 2 on the line of constant K. Point 3 is

characteristic of the completely wet substrate.

Figure 3. Curves of magnetisation as a function of distance from the substrate,

for constant K but with variable pinning factor a. For the point 2 (see Fig. 2),

m(x) first approaches −m∗ on the scale of the bulk correlation length. On a new

larger length scale, m(x) goes through zero and attains m∗.
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